Полупроводниковый диод

Полупроводниковый диод - самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция - это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.

На стыке соединения P и N образуется PN-переход (PN-junction). Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя. То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.


Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания - плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания - плюс к аноду, минус к катоду. В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

Чтобы не возникло путаницы, напомню, что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток, измеряемый в микро, или наноамперах ( в зависимости от модели прибора ). В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде. В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении. Такое напряжение называется напряжение пробоя. Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения Vϒ, для того чтобы диод начал хорошо проводить ток. Для кремниевых приборов Vϒ - это примерно 0.7V, а для германиевых - около 0.3V. Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода.

ССЫЛКИ ПО ТЕМЕ:

Вольт-амперная характеристика (ВАХ) диода

Применение диодов

Полупроводники. Часть III. Влияние примесей на проводимость

КОММЕНТАРИИ:

проф
писал: 2013-08-03
ещё один недоучка в среднем образовании. все предположения и трактования движения электронов и объёмных зарядов, давно уже высрали. и не нужно быть компилятором, переводить и ызрыгать буквы как испорченный телефон
r
писал: 2013-08-05
Сойдёт для меня.
Каратель228
писал: 2013-08-17
Всё чётко и ясно написано. проф, ниочем вообще
Прохожий
писал: 2013-09-05
Всё отлично и доступно написано. Проф придурковатый ботан.
Nk
писал: 2013-09-16
Дырки умеют двигаться? Незнал
Админ
писал: 2013-09-25
Nk, когда свободное место атома с дыркой заполняется электроном из соседнего атома, соседний атом лишается одного электрона. Получается что дырка передвинулась.
Tambu
писал: 2013-10-22
Написано, конечно, доступно. Вот только перепутаны причины в состоянии покоя. До контакта p и n областей они были электрически нейтральны - в p области примесь III группы отбирает электрон у полупроводника IV, полупроводник становится "дыркой", но лишний электрон у примеси никуда не исчезает, аналогично для примеси V группы - электрон улетает, но положительный ион остается. Электрическому полю взяться неоткуда - заряды друг друга компенсируют. Также непонятно с чего бы это электроны полетят назад в n область, где и без них полно электронов, из p области, где электронов практически нет. Диффузия - это же случайный процесс. Просто электроны берут и летят куда им "вздумается". Из n области в p вылетает куча, а назад лететь практически некому. Происходит накопление случайно прилетевших электронов в p области, часть из них рекомбинирует с "дырками", часть остается свободными. И вот тут уже происходит нарушение электронейтральности - p область оказывается заряжена отрицательно, n - положительно. Образуется область пространственного заряда. Появляется электрическое поле и дрейф несет электроны обратно в n область. Дрейф компенсирует диффузию, а не наоборот.
123
писал: 2013-11-22
1)Дырки попадают в n,а электроны в p засчет теплового движения, и там же они рекомбинируют, при этом образуется избыточный заряд - в p области и + в n области вблизи раздела. какая еще диффузия? в это вся и суть, что эти заряды имеют ядра атомов, а значит не могут рекомбинировать, а создают потенциальный барьер. 2)проводимость происходит совсем по другому. при прямом включении. барьер "рассасывается" засчет эл поля и дырки с электронами устремляются (под действием этого же поля) к границе p-n в результате чего они там рекомбинируют. электрон же никак не проходит через оба перехода. С катода электроны "перебегают" в n область, а на анод "забирает электроны" из p области. все это под действием эл поля источника. В обратном направлении тоже ничего подобного. Просто анод "забирает" электроны из n области, а катод отдает электроны дыркам, из за чего в p области область отрицательно заряженных ионов еще расширяется, а в n области расширяется область положительно заряженных ионов(см выше - потенциальный барьер расширяется).
Анатолий
писал: 2014-08-21
Самый лучший сайт с разъеснялками и наглядными примерами, большое спасибо!!!!!!!!!!!!!!!!!!!!!!
Дмитрий
писал: 2014-10-07
Миклашевский - Промышленная электроника, советую. Когда откроете книгу, то сами все поймете. Там более чем доступно все написано. Автору сайта спасибо за материал и проделанную работу.
Александр Шаботин
писал: 2015-02-10
Хороший материал для "чайников", просто, доступно, с понятной графикой. Оптимально для преподавателей школ, НПО, СПО. Спасибо за работу.
ded
писал: 2015-02-27
Привет! такой вопрос... а может такое быть что при прямом подключении электроны с N части заполнят все дырки в P части? если нет то почему? а если да то как это повлияет на свойство диода? ....
Michael
писал: 2015-05-02
А теория P i n диодов будет?

Добавить комментарий:

Ваше имя:
Ваш E-mail:
Ваш комментарий:
Введите сумму чисел с картинки (защита от роботов):